
Query Analysis

Based on the pt-query-digest report sorted by most time consuming queries, the top 6 queries accounted for 85% of your total execution
time. During the 3 hours sampled using a long query time of 0 (capturing all queries), your system was running 111 queries/sec. Here is the
breakdown of your top 6 queries and I've included the full report for your review as well

329.8s user time, 290ms system time, 46.25M rss, 113.91M vsz
Current date: Thu Jun 21 13:34:25 2012
Hostname: bango
Files: diagnostics/mysqld.slow.query.log.pt-digest_0s
Overall: 1.16M total, 545 unique, 111.69 QPS, 0.92x concurrency ________
Time range: 2012-06-21 10:32:32 to 13:25:55
Attribute total min max avg 95% stddev median
============ ======= ======= ======= ======= ======= ======= =======
Exec time 9590s 1us 21s 8ms 4ms 79ms 27us
Lock time 96s 0 3s 82us 93us 8ms 0
Rows sent 1.47M 0 19.50k 1.33 1.96 87.22 0
Rows examine 1.41G 0 614.84k 1.27k 329.68 12.74k 0
Query size 222.54M 8 15.34k 200.84 363.48 122.66 223.14

Profile
Rank Query ID Response time Calls R/Call Apdx V/M Item
==== ================== =============== ====== ====== ==== ===== =======
1 0x966BF1AF355882FB 5228.4144 54.5% 23934 0.2185 1.00 0.14 SELECT zizzle_bp_activity zizzle_users
zizzle_bp_xprofile_data
2 0xC7A3C85C9B35EC3B 924.6605 9.6% 1703 0.5430 0.96 0.83 SELECT zizzle_bp_activity zizzle_users
3 0x3D78916179C76C82 683.7524 7.1% 215 3.1802 0.48 0.50 SELECT zizzle_bp_activity zizzle_users
4 0x215C9A763D786F93 552.2501 5.8% 524 1.0539 0.87 0.96 SELECT zizzle_bp_activity zizzle_users
5 0xC601E80703B62833 509.4502 5.3% 1785 0.2854 1.00 0.01 UPDATE zizzle_posts
6 0x7009AAC9672C67AE 318.8803 3.3% 1407 0.2266 1.00 0.04 SELECT zizzle_bp_activity

Query #1

This was by far your most time consuming query as it accounted for over 54% of your total execution time. Looking at the query, the first
thing that jumps out is high number of rows examined compared to the actual number of rows sent. Here, you can see that in the 95th
percentile, you were reading ~60k rows to return 7 rows:

Attribute pct total min max avg 95% stddev median
============ === ======= ======= ======= ======= ======= ======= =======
Count 2 23934
Exec time 54 5228s 24us 3s 218ms 356ms 174ms 241ms
Lock time 10 10s 0 2s 404us 159us 22ms 131us
Rows sent 3 47.18k 0 73 2.02 6.98 2.54 0.99
Rows examine 61 885.38M 0 66.89k 37.88k 59.57k 22.54k 49.01k
Query size 3 8.31M 361 366 364.26 363.48 1.52 363.48

Looking at the explain plan, you can see that the type index was chosen even though the item_id was much more selective:

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: a
 partitions: NULL
 type: ref
possible_keys: user_id,item_id,type,mptt_left
 key: type
 key_len: 227
 ref: const
 rows: 100280
 Extra: Using where; Using filesort

*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: u
 partitions: NULL
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 8
 ref: turtlejelly_dev.a.user_id
 rows: 1
 Extra: Using where

*************************** 3. row ***************************
 id: 1
 select_type: SIMPLE
 table: pd
 partitions: NULL
 type: ref

possible_keys: field_id,user_id
 key: user_id
 key_len: 8
 ref: turtlejelly_dev.a.user_id
 rows: 2
 Extra: Using where

And here are the index statistics in question:

mysql> show index from zizzle_bp_activity where Key_name = "item_id" or Key_name = "type"\G
*************************** 1. row ***************************
 Table: zizzle_bp_activity
 Non_unique: 1
 Key_name: item_id
Seq_in_index: 1
 Column_name: item_id
 Collation: A
 Cardinality: 553707
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:

*************************** 2. row ***************************
 Table: zizzle_bp_activity
 Non_unique: 1
 Key_name: type
Seq_in_index: 1
 Column_name: type
 Collation: A
 Cardinality: 21
 Sub_part: NULL
 Packed: NULL
 Null:
 Index_type: BTREE
 Comment:
2 rows in set (0.01 sec)

The reason MySQL chose the type index over the item_id index was due to the fact that item_id passed
was not a string literal:

SELECT a.*,
u.user_email,
u.user_nicename,
u.user_login,
u.display_name,
pd.value as user_fullname
FROM zizzle_bp_activity a,
zizzle_users u,
zizzle_bp_xprofile_data pd
WHERE u.ID = a.user_id
AND pd.user_id = a.user_id
AND pd.field_id = 1
AND a.type = 'activity_comment'
AND a.item_id = 715988
AND a.mptt_left BETWEEN 1 AND 10
ORDER BY a.date_recorded ASC

By changing item_id to be a string literal, item_id = '715988', you allow MySQL to use the selective index and table 1 of the explain plan
now looks like this:

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: a
 partitions: NULL
 type: ref
possible_keys: user_id,item_id,type,mptt_left
 key: item_id
 key_len: 227
 ref: const
 rows: 4
 Extra: Using where; Using filesort

You can see that it is now picking the item_id index with great selectivity. On the your production server, you can see the difference in both
execution time and handler statistics when switching this field to be a string literal:

Current:
4 rows in set (0.26 sec)
mysql> show status like "ha%";
+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+

Handler_commit	1
Handler_delete	0
Handler_discover	0
Handler_prepare	0
Handler_read_first	0
Handler_read_key	12
Handler_read_next	58108
Handler_read_prev	0
Handler_read_rnd	4
Handler_read_rnd_next	0
Handler_rollback	0
Handler_savepoint	0
Handler_savepoint_rollback	0
Handler_update	0
Handler_write	0
+----------------------------+-------+	
String Literal Version:	
4 rows in set (0.02 sec)	
mysql> show status like "ha%";	
+----------------------------+-------+	
Variable_name	Value
+----------------------------+-------+	
Handler_commit	1
Handler_delete	0
Handler_discover	0
Handler_prepare	0
Handler_read_first	0
Handler_read_key	12
Handler_read_next	63
Handler_read_prev	0
Handler_read_rnd	4
Handler_read_rnd_next	0
Handler_rollback	0
Handler_savepoint	0
Handler_savepoint_rollback	0
Handler_update	0
Handler_write	0

Based on these numbers, you are looking at a 99.9% reduction in the number of rows examined to execute the same query with a 93%
reduction in execution time. Seeing as this query accounted for over half of your execution time and over 60% of the total rows examined,
you should see a huge performance boost to the server by making this change.

Queries 2, 4, and 6

These queries all follow the same breakdown as query #1. Each uses the item_id not as a string literal and as a result, a much less selective
index is chosen.

Query #2

Here is the query form:

SELECT a.*,
u.user_email,
u.user_nicename,
u.user_login,
u.display_name

FROM zizzle_bp_activity a
LEFT JOIN zizzle_users u ON a.user_id = u.ID

WHERE a.component IN ('groups')
AND a.type IN ('new_blog_post','new_forum_topic','activity_update','joined_group')
AND a.item_id IN (3036)
AND a.hide_sitewide = 0
AND a.type != 'activity_comment'

ORDER BY a.date_recorded DESC
LIMIT 0, 20

The issue is in the a.item_id IN (3036) clause with the id not being a string literal. As is, the query does an index scan of the date_recorded
index (to sort in descending order). By changing that clause to a.item_id IN ('3036'), MySQL chooses the item_id index correctly and
query execution time drops from 0.72 seconds to 0.02 seconds.

Query #4

This is very similar to query #2 with the form of:

SELECT a.*,
u.user_email,
u.user_nicename,
u.user_login,
u.display_name

FROM zizzle_bp_activity a
LEFT JOIN zizzle_users u ON a.user_id = u.ID

WHERE a.component IN ('groups')
AND a.item_id IN (496)
AND a.hide_sitewide = 0
AND a.type != 'activity_comment'

ORDER BY a.date_recorded DESC
LIMIT 0, 20

Similary, the issue is in the a.item_id IN (496) clause with the id not being a string literal. As is, the query does an index scan of the
date_recorded index (to sort in descending order). By changing that clause to a.item_id IN ('496'), MySQL chooses the item_id index
correctly and query execution time drops from 0.70 seconds to 0.03 seconds.

Query #6

While this query is a different form selecting a different field, it follows the same pattern as above. The secondary_item_id index is again
on a varchar field, but the query is submitted without the string literal:

SELECT id
FROM zizzle_bp_activity
WHERE type = 'activity_comment'

AND secondary_item_id = 720826

Like the other queries, as the data type doesn't match, it can't use the selective index and must resort tousing the type index. Changing this to
also be a string literal dropped execution time from 0.21 seconds to under 0.00 seconds.

Queries 3 and 5

These queries share a different issue in that MySQL can't use an index when performing an infix text search:

WHERE a.content LIKE '%@nrestakhri<%'

In order to make this run faster, I would recommend to restrict this type of search to a prefix search, WHERE a.content LIKE
'@nrestakhri<%', or use an external fulltext search indexer like Sphinx.

In this case, however, I would recommend going the external index route. Since you are running your LIKE clause against a text field, you
can't add an index to be hit anyway. If this were a varchar field withan index, restricting the search to be a prefix match would help.

Another option if using an external indexer isn't an option, would be to add another indexed field to the table that is the prefix of the content

mailto:'%25@nrestakhri

field and use it for your search. When each record is populated, you can grab the first few characters of the text and populate a field, maybe
called content_search, with this values. Again, this will only work for a prefix search. In the above example, your where clause could then
become:

WHERE a.content_search = '@nrestakhri<'

In general, when doing fulltext searches of this nature, it would be most beneficial to implement a full text
search engine and then you won't have to change the business logic of your application.

mailto:'@nrestakhri

	Query Analysis
	Query #1
	Queries 2, 4, and 6

	Query #2
	Query #4
	Query #6
	Queries 3 and 5

